
Predicting the Stability Constants of Metal-Ion Complexes from First
Principles
Ondrej Gutten and Lubomír Rulísěk*
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ABSTRACT: The most important experimental quantity
describing the thermodynamics of metal-ion binding with
various (in)organic ligands, or biomolecules, is the stability
constant of the complex (β). In principle, it can be calculated
as the free-energy change associated with the metal-ion
complexation, i.e., its uptake from the solution under standard
conditions. Because this process is associated with the inter-
actions of charged species, large values of interaction and
solvation energies are in general involved. Using the standard
thermodynamic cycle (in vacuo complexation and solvation/
desolvation of the reference state and of the resulting
complexes), one usually subtracts values of several hundreds
of kilocalories per mole to obtain final results on the order of
units or tens of kilocalories per mole. In this work, we use density functional theory and Møller−Plesset second-order
perturbation theory calculations together with the conductor-like screening model for realistic solvation to calculate the
stability constants of selected complexes[M(NH3)4]

2+, [M(NH3)4(H2O)2]
2+, [M(Imi)(H2O)5]

2+, [M(H2O)3(His)]
+,

[M(H2O)4(Cys)], [M(H2O)3(Cys)], [M(CH3COO)(H2O)3]
+, [M(CH3COO)(H2O)5]

+, [M(SCH2COO)2]
2−with eight

divalent metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+). Using the currently available computational protocols,
we show that it is possible to achieve a relative accuracy of 2−4 kcal·mol−1 (1−3 orders of magnitude in β). However, because
most of the computed values are affected by metal- and ligand-dependent systematic shifts, the accuracy of the “absolute”
(uncorrected) values is generally lower. For metal-dependent systematic shifts, we propose the specific values to be used for the
given metal ion and current protocol. At the same time, we argue that ligand-dependent shifts (which cannot be easily removed)
do not influence the metal-ion selectivity of the particular site, and therefore it can be computed to within 2 kcal·mol−1 average
accuracy. Finally, a critical discussion is presented that aims at potential caveats that one may encounter in theoretical predictions
of the stability constants and highlights the perspective that theoretical calculations may become both competitive and
complementary tools to experimental measurements.

1. INTRODUCTION

Recent developments in both density functional theory (DFT)
and ab initio wave function theory domains of computational
chemistry, together with advances in the modeling of solvation
effects,1,2 resulted in the situation that theoretical calculations
nowadays represent an integral part of many chemical and bio-
chemical studies.3 An appropriate selection and benchmarking of
all components and methods necessary for accurate predictions
of free-energy values for studied chemical processes, together
with a careful setup of the model system (which is not always
trivial), leads to high-quality computational data that comple-
ment and rival the experimental counterparts.
One of the challenges in computational (bio)chemistry is

related to the quantitative treatment of metal-ion coordination
in biomolecules, experimentally quantified by the stability
constant (β) that is the equilibrium constant for the formation
of a complex in solution.4 In order to calculate these observable
thermodynamic quantities from first principles, one usually

applies a standard thermodynamic cycle consisting of the studied
process in the gas phase (in this case, complexation of the ions
with ligands) and (de)solvation of all of the species involved (i.e.,
of the complexed molecules vs free ligands and hydrated metal
ions).5 For ionic species, these elementary processes are usually
associated with large energies of several hundreds of kilocalories
per mole (the gas-phase association of the ion···neutral or ion···
ion species and their solvation/desolvation energies) that almost
cancel each other out to yield the final ΔG values of several
kilocalories per mole (corresponding to dissociation or stability
constants in the typical millimolar to femtomolar range).
However, what seems to be a small difference from the com-

putational point of view and from the perspective of the large
energy changes associated with the elementary processes is
a markedly large value in chemical and biological systems.
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Differences on the order of ∼5 kcal·mol−1 govern many
fundamental phenomena, such as metal-ion selectivity in
biomolecules.6−10 Thus, a deeper theoretical understanding of
the metal-ion uptake by (bio)molecules may help us to answer
fundamental questions, such as why nature selected various metal
ions for performing specific functions.11 Theoretical calculations
can be viewed (and used) as a unique and complementary tool to
well-established experimental methods12−14 to correlate the
calculated or experimental thermodynamics with the structural
details.15−18 Once, and only once, a satisfactory agreement
between the computed and experimental data is obtained,
decomposition of the total free-energy change, energy/structure
mapping, or analysis of the electronic structure of the studied
system can be done and provides us with the insights and
concepts.19,20

Many systematic efforts to quantitatively assess the selectivity
of metal binding by theoretical methods were described in the
literature over the past 1.5 decades.21−29 Recently, we presented
a computational study5 in which we critically evaluated the
performance of the ab initio and DFT electronic structure
methods in calculations of the energetics associated with metal-
ion complexation on a set of five model [MXn]

c+ complexes
(M = Fe2+, Cu2+, Zn2+, and Cd2+; n = 2 and 4−6) spanning four
common coordination geometries. Reference values for the gas-
phase complexation energies were obtained using the CCSD(T)/
aug-cc-pVTZmethod and compared with cheaper methods, such
as DFT and RI-MP2. In the same study,5 we applied two popular
and presumably accurate solvation methodsconductor-like
screening model for realistic solvation (COSMO-RS) and
universal solvation model employing the full solute density
(SMD)to find out whether the calculated free-energy (ΔG)
changes associated with metal-ion complexation in solution
match (or are at least in the range of) the experimental stability
constants. The computational data highlighted several intricacies
in theoretical predictions of the stability constants that may result
in errors of several tens of kilocalories per mole in the final ΔG
(−RT ln β) values: (a) the covalent character of some metal−
ligand bonds [e.g., copper(II) thiolate]; (b) various definitions
of the reference state of some systems (e.g., Jahn−Teller
unstable [Cu(H2O)6]

2+ vs [Cu(H2O)4]
2+); (c) the presence of

the negatively charged ligand in the metal coordination sphere.
A similar approach has been evaluated in a recent study by
Delgmann and Schenk.30 The investigation has confirmed that
conventional solvation treatment by methods like the polariz-
able continuum model (PCM) or COSMO is insufficient. The
application of more advanced methods (specifically COSMO-RS
examined therein) in combination with appropriate quantum-
chemical methods is essential to obtain good quantitative agree-
ment with experimental data. Although a number of problematic
points concerning COSMO-RS have been highlighted, in
combination with careful analysis it stands as a very powerful
tool for dealing with solvation effects.
The choice of a proper quantum-chemical method is very

problematic. Although DFT is a popular choice, it is clear that
none of the current functionals can present a final and universal
answer for a wide range of properties. This is especially true for
transition metals, which exhibit very diverse chemistry. For
example, local-density approximation and generalized-gradient
approximation functionals overstabilize low-spin states, although
they can perform reasonably well in describing certain properties,
e.g., geometries.31 BP86 is of special interest to this study because
of its involvement in the COSMO-RS protocol. Although it is
considered to have a decent price/performance ratio, energetics

is of limited accuracy, and it is always advisable to compare it with
more accurate methods.32

The aim of this study is a careful analysis and inspection of all
of the aforementioned caveats in the ab initio calculations of the
stability constants performed on a much broader set of
complexes with experimentally determined stability constants,
using the set of eight biologically relevant divalent metal ions:
Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+. Various
details in adopted computational protocols are carefully analyzed
and discussed, and it is concluded that while the accuracy of
“absolute” values of binding free energies is still out of reach, the
average accuracy of relative affinities of 2 kcal·mol−1 might be, in
principle, achievable.

2. METHODS
2.1. Computational Details. All calculations reported in this work

were performed using the TURBOMOLE 6.3 program. The quantum-
chemical calculations were mostly performed using DFT, while in a
few cases, the MP2 method has been employed. The geometry
optimizations were carried out at the DFT level, employing the density-
fitted (vide infra) BP86 functional (RI-BP86)33a,34 and the def-TZVP
basis set on all of the atoms.35,36 All gas-phase structures represent true
minima, based on a frequency calculation. The single-point energies
were then calculated using the RI-BP86, RI-PBE,37 BH-LYP,33a−c and
B3LYP33a−d,38 functionals or at the RI-MP2 level of theory. All DFT
calculations using nonhybrid functionals (as well as MP2 calculations)
were expedited by expanding the Coulomb integrals in an auxiliary basis
set, using the resolution-of-identity (RI) approximation (density
fitting).39 A multipole-accelerated version of the RI algorithm was
used for MP2 calculations. In most of the cases, the def2-TZVP basis
set35 was employed for all of the atoms, with two exceptions represented
by the RI-PBE and RI-BP86 calculations, where def-TZVP was used.
Grimme’s D3 dispersion correction was used for all DFT calculations.40

For Cd and Hg, small-core Stuttgart/Dresden pseudopotentials were
applied to account for scalar relativistic effects.41

All metal ions were considered in their 2+ oxidation state. In all cases,
high-spin states are assumed (with a couple of exceptions discussed in
the text). The choice is justified by calculating energies of low-spin
alternatives of selected systems in which one may expect the low-spin
states to be closer in energy (Table S9 presented in the Supporting
Information, SI). The exhaustive treatment of all of the spin-state
splittings for all of the studied complexes is beyond the scope of this
study; for iron(II) systems, the reader is referred, for example, to the
above-mentioned work of Droghetti et al.31

Solvation (free) energies of all studied species were calculated using
the COSMO-RS method,42,43 as implemented in the COSMOtherm
program,44 using the BP_TZVP_C30_1201.ctd parametrization file.
The geometries in the solvent (water) were optimized using the
COSMO method,45 with COSMO radii of 2.0 Å for Mn−Zn, 2.2 Å for
Cd, and 2.4 Å for Hg and εr = 80.0. Quite some effort has been exerted
to find the true minima; however, because of higher computational
demands, this was not achieved in all of the cases. Single-point
calculations used for the preparation of COSMO-RS calculations were
done according to the recommended protocol, which includes
RI-BP86/def-TZVP calculations with Grimme’s D3 dispersion
correction and uses ε = ∞ (ideal conductor) or 1 (vacuum) with the
same radii as those described previously, vide supra. The Gibbs free
energy (sometimes denoted free enthalpy) of a system with metal ionM
and set of ligands {Li} ≡ L (introduced in Figure 1) is defined as

= + + −μG E G E RT q q qln( )M,L
calc,

el solv ZPVE trans rot vib (1a)

where Eel is the in vacuo energy of the system, Gsolv is the solvation free
energy, EZPVE is the zero-point vibrational energy, and −RT ln(qtrans qrot
qvib) accounts for the entropic terms and the thermal correction to the
enthalpy, obtainable from a frequency calculation and utilizing the ideal-
gas approximation (T = 298 K and p = 2.48 MPa, which correspond to
1 M concentration).46 As is discussed in more detail below, these latter
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two terms may sometimes present a nontrivial technical challenge.
Therefore, we preferred to use the following equation as the practical
(albeit not theoretically pure) solution and approximation to the free
energy of the complex, using only a single, COSMO-optimized
geometry:

= +G E GM,L
calc

el solv (1b)

Throughout the work, the values of GM,L
calc (based on eq 1b) and Eel

obtained via the RI-BP86 method are reported, whereas Eel obtained via
the RI-MP2 method and the values of GM,L

calc,μ (based on eq 1a) can be
found in the SI (Tables S1−S6).
Experimental stability constants, βM,L, were converted to differences

in the Gibbs free energy, using the formula

βΔ = − ≈ − = − θ

θ θ
G RT K RT RTln ln ln

[ML ]
[M] [L]

n
nM,L

exp
M,L M,L

(2)

where K stands for the thermodynamical stability constant, β for the
experimental (concentration) stability constant, and [X]θ for the
standard concentration.
This is an approximation because the experimental values were obtained

at generally nonzero ionic strengths and the measured concentration
constants differ somewhat from the thermodynamical stability constants.
The difference between the two, i.e., the dependence of the concentration
constants on the ionic strength, was generally rather low in comparison to
errors in the calculated values. Rigorously, the values could be extrapolated
to I = 0, for example, with the help ofDebye−Hückel theory to estimate the
activity coefficients (or some of its extension, such as the Davies equation)
using at least three experimentally determined values at varying ionic
strength. Such data are not available in all cases, whereas in some other
cases, multiple values originating in different sources can be found, and this
questions the justifiability of such extrapolations to thermodynamical
stability constants. Therefore, we prefer to use the experimental values
pertinent to specific conditions in our comparison with the calculated
values, thus assuming the activity coefficient to be equal to 1.
In silico, ΔGM,L

calc was calculated as the difference of the Gibbs free
energies, GM,L

calc , as defined in eq 1, of the products and reactants in the
general complexation reaction:

+ → + −+ +n m[M(H O) ] { L} [ML (H O) ] (6 )H Oc
n m

c
2 6

2
2

2
2

(3)

where c is the total formal charge of the ligands. The numbers of ligands,
n, and H2O molecules, m, are specified in the corresponding tables.
2.2. Model Systems. The set of model systems comprised

six complexes ([M(NH3)4]
2+, [M(Imi)]2+, [M(His)]+, [M(Cys)],

[M(CH3COO)]
+, and [M(SCH2COO)2]

2−). These systems are simple
enough to avoid serious problems with the correct geometry description
with only a few binding modes to be tested. We have no structural
information about the model systems apart from the number of ligands
and their protonation state. This leaves an open question of how
many H2O molecules should be explicitly included in the calculation.

For some of the systems, we try two different values for this variable,
which gives rise to the 10 systems that were studied, as depicted in
Figure 1.

Including more H2O molecules than are needed to saturate the first
coordination sphere (i.e., filling the second coordination sphere) might
raise a concern about artificial hydrogen bonds being formed. This issue
is very difficult to address because the exact hydrogen-bonding network
around the complex is not known. Nevertheless, we carried out model
calculations for the cysteinate complex (MD sampling). By comparing
its complexes with 18 and 4 H2O molecules, we observed that similar
hydrogen-bonding patterns are present. Probably the weakest cor-
respondence has been found for HgII. However, it is not clear whether
18 H2Omolecules are sufficient to prevent potential artifacts or whether
a missing hydrogen-bonding pattern is due to insufficient sampling
(10 systems with 18 H2O molecules for each metal ion). These
structures can be found in the SI.

The concentration constants for most (often for all) metal ions in the
studied series were available and cover a wide range of values with
log(βL

max/βL
min) = 1−35, where βLmax and βL

min are the maximum (mostly
in the Hg2+ complex) and minimum (mostly Mn2+) values of the
concentration constants for a given set of ligands L.

3. RESULTS AND DISCUSSION

3.1. Experimental Free Energies of Complexation. In
Table 1, we summarized the available experimental information
on free-energy changes associated with the complexation of
metal ions in the studied systems. The values of complexation
free energies for a given metal M and set of ligands L, ΔGM,L

exp , are
derived from the experimental values of log βM,L (via eq 2)
obtained from Martell’s tables.47 We may observe the known
general trends for 3d metal ions, conforming to Irving−Williams
series of stability constants with Ni2+ and Cu2+ as the strongest
binders, whereas the order of the other metal ions does vary
somewhat (mainly Co, Zn, and Cd). However, the magnitude
of these differences, |ΔGL

exp,max − ΔGL
exp,min|(Mn

2+
↔Cd

2+
), varies

significantly among the studied systems (from 1.1 kcal·mol−1 for
the [M(CH3COO)]

+ system to 15 kcal·mol−1 for [M(NH3)4]
2+).

These magnitudes are even more pronounced if we include Hg2+

in the series, which has in all cases the highest binding affinity.
3.2. Calculated Values of the Free Energies of Metal-

Ion Complexation. In Table 2, we summarize the calculated
values of complexation free energies,ΔGM,L

calc , calculated according
to eqs 1b and 3 using RI-BP86 for gas-phase electronic energies
(the corresponding values of ΔGM,L

calc obtained using RI-MP2 for
the gas-phase electronic energies and ΔGM,L

calc,μ obtained using
eqs 1a and 3 using various methodsRI-BP86, RI-PBE, B3-LYP,
BH-LYP, and RI-MP2are listed in Tables S6 and S1−S5 in the
SI, respectively). Representative equilibrium geometries of the

Figure 1.Model complexes: (a) [M(NH3)4]
2+; (b) [M(NH3)4(H2O)2]

2+; (c) [M(Imi)(H2O)5]
2+; (d) [M(His)(H2O)3]

+; (e) [M(His)(H2O)4]
+; (f)

[M(Cys)(H2O)4]; (g) [M(Cys)(H2O)3]; (h) [M(CH3COO)(H2O)3]
+; (i) [M(CH3COO)(H2O)5]

+; (j) [M(SCH2COO)2]
2−.
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studied complexes are depicted in Figure 2, whereas the
complete set of all equilibrium geometries of studied complexes
is deposited in the SI.
In an ideal case, each system would be represented by an

ensemble of structures. However, a satisfactory sampling would
require tens, and possibly hundreds, of conformations with at
least two coordination spheres, which reaches way beyond
affordable limits. Dealing with less sizable statistics is not
reliable and, because of “steep” Boltzmann weights, is likely to be
dominated by the most negative (i.e., the most stable) entry. We
illustrate this by comparing Boltzmann-weighted averages of the
overall free-energy change (i.e., calculated stability constant) for
one of the systemsthe [M(H2O)x(Cys)] complexwith the
same value obtained using the protocol utilized in this work
(i.e., considering only one optimized structure). An ensemble of
10 structures with two (Table S7 in the SI) or one (Table S8 in
the SI) coordination sphere of H2O molecules has been used
in this comparison. Providing a larger bulk of water (18 H2O
molecules in [M(H2O)3(Cys)]·15H2O system) introduces large

“noise”, and the ensemble is dominated by contribution from a
single conformer. On the other hand, all conformers in a single
coordination sphere ([M(H2O)3(Cys)] system) are very similar,
and the weights, as well as contributions, are almost identical.
For these reasons, we opt to represent the systems by a single

structure, bearing fully in mind that systems with nonnegligible
differences in conformational entropy will suffer systematic
mistreatment. However, we do not expect this to be an issue for
our chosen set of simple ligands. For some complexes, multiple
conformations were considered as potential candidates. How-
ever, even a single binding mode is not easy to characterize by
a single value of ΔGM,L

calc (as can be demonstrated by a range of
values obtained for, e.g., [M(H2O)4(Cys)] system; Table 2).
This is, in part, due to the lack of implementation of structure
optimizationwith respect to our definition ofGM,L

calc (eqs 1a and 1b),
which includes two largely opposing terms (COSMOenergy and a
COSMO-RS correction). Only optimization with respect to the
COSMO energy was available, whereas a rigorous optimization
may provide different preferences of binding modes for more

Table 1. Estimated Free Energies of Complexation (in kcal·mol−1), ΔGM,L
exp , of the Studied Metal Ions As Calculated from

Experimental Stability Constantsa

ΔGM,L
exp [kcal·mol−1]

complex Ib Mn Fe Co Ni Cu Zn Cd Hg

[M(NH3)4]
2+ 2 −2.3 −4.5 −7.6 −11.1 −17.6 −13.2 −10.1 −26.1

[M(Imi)]2+ 0.1 −1.7 −3.3 −4.1 −5.7 −3.5 −3.7 −12.5h

[M(His)]+ 0.1 −4.5 −8.0c −9.4 −11.8 −13.9 −8.9 −7.7
[M(Cys)] 0.1 −6.5 −9.0d −11.1 −13.4 −12.4 −13.8g −19.7
[M(CH3COO)]

+ 0 −1.9 −1.9 −1.9 −1.9 −3.0 −2.2 −2.6 −5.9
[M(SCH2COO)2]

2− 0.1 −10.3 −14.9e −16.6 −17.8f −20.5 −59.8i
aIt is assumed that these represent thermodynamical equilibrium constants. Unless stated otherwise, the values are for T = 298.15 K. bIonic strength
in mol·dm−3. cI = 3. dT = 293.15 K. eI = 0. fT = 293.15 K. gT = 310.15 K; I = 0.15. hI = 3. iI = 1.

Table 2. Calculated Values of Complexation Free Energies, ΔGM,L
calc (kcal·mol−1)a

metal ion

system Mn Fe Co Ni Cu Zn Cd Hg

[M(NH3)4]
2+ 13.1 11.0 2.2 −1.8j −8.0 −0.6 1.4 −11.6

[M(NH3)4(H2O)2]
2+ −8.4b −11.3b −14.4b −17.9b −28.5c −14.9d −17.3d −27.7d

−8.1b −11.3b −14.6b −17.3b −24.8b −12.1b −14.2b −29.9d

[M(Imi)(H2O)5]
2+ −3.7 −4.6k −5.8 −6.1 −6.4 −4.4 −4.0 −11.2

[M(H2O)3(His)]
+ 5.6 4.3 0.0 −0.9 −5.1 3.9 4.0 −5.2k

[M(H2O)4(His)]
+ −11.8e −12.9e −11.0e −17.9e −23.9e −13.4e −13.2e −21.4k

−13.0f −14.8f −15.8f −19.6f −20.5f −14.4f −14.4f −20.6k

[M(H2O)3(Cys)] 13.8 12.1 6.4 9.1 −1.6 12.9 6.4 −13.9
[M(H2O)4(Cys)] 4.1g 1.4g 0.6g −0.4g −14.4g,k 1.9g −4.3g −24.0g,j

1.3e 1.7e −2.9e −0.6e −4.5e,k −2.6g −6.9g −22.1g,j

1.3e 2.9e −4.9e −3.3e −12.4e,k 0.4e −6.7g −22.6j

6.1g 3.8g −0.3g 3.5g −12.5g,k 1.6g −2.1g −22.9j

[M(CH3COO)(H2O)3]
+ 30.1 31.9 27.5 35.8 25.0 28.7 27.3 22.7

[M(CH3COO)(H2O)5]
+ 3.7h 4.5h 2.8h 5.0h 0.0h 4.5h 2.8h −1.0h

4.6i 6.1i 6.4i 7.7i −0.2i 7.4i 5.1i 0.3i

[M(SCH2COO)2]
2− 35.6 31.0 25.7 40.7j 8.9k 28.0 21.5k −8.0

aCalculated using the RI-BP86/COSMO-RS protocol utilizing eqs 1b and 3. bOctahedral with H2O molecules in mutual cis (upper row) or trans
(lower row) position. cSquare pyramidal with H2O in the axial position; the other H2O is in the second sphere. dTetrahedral; H2O molecules in the
second sphere. eTridentate binding mode. f(N,NImi) bidentate binding mode.

g(N,S) bidentate binding mode. hSyn binding mode of acetate. iAnti
binding mode of acetate. jWe think that these values of ΔGM,L

calc might be incorrect and are excluded from further analysis for various reasons: (i)
[Ni(NH3)4]

2+ and [Ni(SCH2COO)2]
2− systems in square-planar geometry are low-spin complexes, as opposed to all other systems.

[Co(SCH2COO)2]
2− is potentially low-spin as well but is included in the analysis and assumed to have a high-spin ground state; (ii) the equilibrium

geometry of [Hg(H2O)m(Cys)] is entirely different from the geometries of other systems because of the preference of Hg for linear geometry.
Although this trait is not unique to these systems, it still makes a direct comparison using the current protocol problematic. kExperimental stability
constants are not available for these complexes.
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complex systems. Even if the global minimum with respect to
GM,L
calc could be found, it may not necessarily represent the “true”

structure of the real complex in solution. The reason for this is
discussed in detail in section 3.3. In subsequent sections, the
conformations with the lowestGM,L

calc are used as representatives of a
given system.
The values of ΔGM,L

calc for some of the systems([M(NH3)4-
(H2O)2]

2+, [M(Imi)(H2O)5]
2+, [M(H2O)4(His)]

+, and [M-
(CH3COO)(H2O)5]

+)are in the vicinity of their experimental
counterparts, but even for these systems, the error commonly
exceeds 6 kcal·mol−1 in either direction which is not satisfactory.
For other systems, the deviations between theory and experi-
ment are greater still.
It turns out that compelling information can be unveiled if we

examine the differences between the experimental and calculated
values, ΔΔGM,L, defined as

ΔΔ = Δ − ΔG G G( )M,L M,L
exp

M,L
calc

(4)

whereΔGM,L
exp is defined by eq 2 and listed in Table 1 andΔGM,L

calc is
obtained from calculation via eqs 1b and 3 and summarized in
Table 2. Next, we show that a large part of this discrepancy can
be identified and qualitatively predicted. To this end, we split
ΔΔGM,L into two contributions: the ligand-specific shift, LSSL,
and the metal-specific shift, MSSM,L.
3.3. Analysis of Ligand-Specific Shifts. The first of these

contributions, the ligand-specific shift, is constructed as an average
of all values of ΔΔGM,L for a given set of ligands, L, and denoted
as LSSL:

∑=
ΔΔ

= + +

G

n
LSSL

M {Mn ,...,Hg }

def
M,L

2 2 (5)

“def” indicates that the only allowed values of M are those
for which ΔΔGM,L is defined; i.e., both ΔGM,L

exp and ΔGM,L
calc are

available. For a given method and a given set of ligands L, there
is a single value of LSSL and it represents how far, on average,
the calculated result is from the experimental one, i.e., an average
error. The values of LSSL are listed in Tables 4 (last column) and
S1−S6 in the SI.
The ligand-specific shifts, LSSL, are significant, ranging from

less than +8 to −50 kcal·mol−1. The somewhat good cor-
respondence between the experimental and calculated values of
free energies of complexation for the four systems ([M(NH3)4-
(H2O)2]

2+, [M(Imi)(H2O)5]
2+, [M(H2O)4(His)]

+, and [M-
(CH3COO)(H2O)5]

+) mentioned in section 3.2 is, in part, due
to lower values of their ligand-specific shifts (+6.3, +1.0, +7.4,
and −5.4 kcal·mol−1, respectively). LSSL consists of two major
contributions. One originates in the ZPVE− RT lnQ term that is
neglected in eq 1b (included in eq 1a) and is especially notable
in cases where there is a change in the number of species upon
complexation (e.g., [M(NH3)4]

2+, [M(CH3COO)(H2O)3]
+,

[M(H2O)3(Cys)], and [M(SCH2COO)2]
2−). Comparing

Table 2 (based on eq 1b) with Table S1 in the SI (values obtained
by using eq 1a) shows that if this contribution is included, the
magnitude of the overall error significantly decreases.
The ZPVE−RT lnQ term is commonly estimated by invoking

the ideal gas and rigid-rotor/harmonic-oscillator approximation,
which requires a gas-phase structure of the system that needs to
be obtained in addition to the COSMO-optimized structure.
However, this may introduce an error that increases the more the
two structures diverge from each other. An alternative approach
is to utilize these approximations for a COSMO-optimized structure.
However, besides being accompanied by technical complications,
it is not rigorous48 and, again, introduces a systematic error that is
difficult to control.
The other source of error is a certain bias of the adopted

protocol for solvating the charged ligands in their unbound and
bound states. The magnitude of this error largely corresponds to

Figure 2.Representative equilibrium geometries for selected complexes studied in this work: (a) [Mn(His)(H2O)4]
+, (N,N,O) bindingmode, oneH2O

in the second coordination sphere; (b) [Mn(His)(H2O)4]
+, (N,N) binding mode; (c) [Mn(Cys)(H2O)4], (N,S,O) binding mode, one H2O in the

second coordination sphere; (d) [Mn(Cys)(H2O)3], (N,S) binding mode, trigonal-bipyramidal geometry, one H2O in the second coordination sphere;
(e) [Mn(SCH2COO)2]

2−.
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the type of group (carboxylic acid, thiolate, amine nitrogen, etc.).
Apparently, complexation energies for acetate, thioglycolate,
and cysteine are not negative enough (even if the ZPVE − RT ln
Q term is included), implying too favorable solvation of the
unbound ligands. For the other systems (ammonia, imidazole,
and histidine), the values are, on the contrary, too negative,
indicative of overstabilization of bound imidazole and amine
N atoms over neutral unbound states. In the case of histidine,
which experiences the opposing effects of carboxyl O and N
atoms, the latter prevails.
Because the complexation process can be viewed as the reverse

of proton exchange with H2O molecules (i.e., a proton rather
than a metal ion acts as the Lewis acid), we tried to justify the
validity of the above hypothesis by calculating the pKa values (or,
more precisely, ΔGprotonation values, which are also applicable in
the case of multiple protonation sites) of studied ligands.
As can be seen from the results presented in Table 3, the

ligand-dependent shifts, LSSL, qualitatively mimic the deviations
between theoretically predicted and experimental pKa’s (i.e.,
ΔΔGexp/calc), and they may serve as the “zero-order” estimates of
the expected LSSL values. It must be emphasized that this
correlation does not include the number of ligands and uses only
an average of values (viz. definition of LSSL in eq 5) over a series
of metal ions. It is, by no means, meant to be quantitative, but
it does demonstrate the major contributions to LSSL, i.e., the
protocol bias and the ZPVE − RT ln Q term.
The nonnegligible magnitudes of these systematic deviations

(Table 3) warn that extra care needs to be taken when comparing
two conformations for which the difference between their
respective ΔGM,L

calc values is in the direction of the “protocol bias”.
For example, in complexes with histidine, the (N,NImi) binding
mode seems to be preferred over the tridentate mode, but
whether this might be due to the bias of the protocol used or it is
indeed the preferred binding mode found in solution is difficult
to conclude unambiguously. On the other hand, for cysteine, the
(N,S) mode is always preferred over the (N,O) mode (data not
shown) in spite of the understabilization of the bound thiolate
group, which leaves more confidence in concluding that this is
indeed the preferred binding mode.
The description and analysis of both components of LSSL

remain largely qualitative. Still, we feel that comprehending
the nature of LSSL (or, in general, understanding systematic
deviations in protocols used for calculations of solvation Gibbs
free energies) is important because it has significant implications
in various calculations of the thermodynamic properties of
molecules [stability constants, reduction potentials, or acidity
constants (pKa’s)].
A better quantitative insight into the LSSL values might be

obtained by comparing the calculated solvation energies with
experimental data. This approach, however, is only partially
applicable because even if the solvation values for ligands and

metal ions are all available, they certainly are not available for the
resulting complex.

3.4. Analysis of Metal-Specific Shifts. If one is, however,
focused on the selectivity of a particular site for a given metal ion,
the ligand-specific shifts, LSSL, can be disregarded because they
do not affect the relative affinities of a series of metal ions for the
particular site. We define the metal-specific shifts as

= ΔΔ −GMSS LSSM,L M,L L (6)

In other words, it is a measure of how the predicted values
deviate from the actual relative affinities. In order to quantify how
systematic the shifts are, we use two types of root mean squares
(RMSs) of these RMSM,L values: denoted as RMSL and RMSM.
The former, RMSL, is calculated from the values of RMSM,L for
one specific set of ligands L and all possible metal ions:

∑=
= + + n

RMS
(MSS )

L
M {Mn ,...,Hg }

def
M,L

2

2 2 (7)

A low value of RMSL implies that the relative affinities of metal
ions for a given set of ligands L are reproduced well. The latter,
RMSM, is analogously defined for one specific metal ion and all
possible sets of ligands L:

∑=
= + ‐ n

RMS
(MSS )

M
L {[M(NH ) ] ,...,[M(SCH COO) ] }

def
M,L

2

3 4
2

2 2
2

(8)

A low value of RMSM implies that the affinity of a given metal ion
M is reproduced with a similar error for various systems.
First, we focus our attention on the values of RMSL in Table 4.

Admittedly, someof the systems ([M(Imi)]2+ and [M(CH3COO)]
+)

have a smaller range of binding free energies (cf., ΔGM,L
exp in

Table 1), which probably also contributes to the lower variance of
MSSM,L and, hence, lower RMSL. However, this is not the sole
reason for the lower values of RMSL because these also remain
quite low for more selective systems ([M(Cys)] and [M(His)]+).
Additionally, a large part of RMSL is often due to one or two
outlying values, while the other values are much smaller.
Systems that differ in the number of water ligands do possess

some similarity in the values of individual metal-specific shifts
but are not entirely equivalent in this respect. While this can be
indicative of one of the systems being a better representation of
an actual species in solvent, it has to be borne in mind that the
search for local minima is not consistent across the metal-ion
series, and this can easily be a more influential factor than the
geometry of ligands around a metal ion.
The values in Table 2 were calculated using RI-BP86 and

eqs 1b and 3, although in our previous work,5 wemildly advocated
for use of the RI-MP2 method for calculating the gas-phase
interaction (complexation) energies for the complexes of divalent

Table 3. Contribution of Protocol Bias to Ligand-Specific Shifts, LSSL (kcal·mol−1)

acid−conjugate base ΔGexp ΔGcalc ΔΔGexp/calc complexation LSSL
a

NH3 → NH4
+ −12.6 −17.3 4.7 [M(H2O)6]

2+ + 4NH3 → [M(NH3)4(H2O)2]
2+ + 2H2O 2.8

Imi → ImiH+ −9.5 −12.6 3.1 [M(H2O)6]
2+ + Imi → [M(Imi)(H2O)5]

2+ + H2O 0.3
His− → HisH2

2+ −23.0 27.1 4.1 [M(H2O)6]
2+ + His− → [M(His)(H2O)3]

2+ + 3H2O 3.0
Cys2− → Cys+ −27.8 −23.2 −4.6 [M(H2O)6]

2+ + Cys2− → [M(Cys)(H2O)3] + 3H2O −8.0
CH3COO

− → CH3COOH −6.5 −4.6 −1.9 [M(H2O)6]
2+ + Ac− → [M(Ac)4(H2O)5]

+ + H2O −8.6
SCH2COO

2− → HSCH2COOH −19.3 −9.7 −9.6 [M(H2O)6]
2+ + 2tg2− → [M(tg)2]

2− + 6H2O
b −13.5

aCalculated using the RI-BP86/COSMO-RS protocol based on eqs 1a and 3; i.e., the terms ZPVE and RT ln Q are included. Full data, from which
the LSSL value has been obtained, can be found in Table S1 in the SI. btg stands for the thioglycolate ligand, (SCH2COO)

2−.
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metal ions and ligands withN, S, andO donor atoms [considering
the CCSD(T) calculations as the reference]. In contrast, the
RI-BP86 functional belonged to the least satisfying methods
investigated. Surprisingly, the composite RI-MP2/COSMO-RS
protocol (i.e., RI-MP2 values used for the gas-phase complexation
energies and the RI-BP86/def-TZVPmethod used for calculation
of the solvation energies within the COSMO-RS framework) is
comparable to the presented RI-BP86/COSMO-RS values (data
can be found in the SI, Tables S2 and S6, for values obtained using
eqs 1a, 1b, and 3). The same essentially holds true for the three
other functionals (RI-PBE, BHLYP, and B3LYP; data in the SI,
Tables S3−S5) that were shown to be superior (BH-LYP,
B3-LYP) or on par (RI-PBE) to RI-BP86 in the gas phase [with
respect to the CCSD(T) reference].
In order to provide some arguments in favor of the observed

performance of RI-BP86, we may recall that the presented
computational scheme of the calculation ofG (see eqs 1a and 1b)
includes terms of which the gas-phase complexation energies, Eel,
and solvation energies, Gsolv, are the most important ones. They
almost cancel out to yield the final values of G on the order of
units or tens of kilocalories per mole. It is worth mentioning that
neither of these two contributions alone contains accurate
information about the absolute or relative complexation energies.
In the COSMO-RS protocol, the solvation energy is obtained
from the gas-phase energy and COSMO single-point (ε = ∞)
calculations using the functional for which COSMO-RS has been
parametrized, i.e., the RI-BP86 functional. If we use RI-BP86
(with the same basis set) for the gas-phase energies as well,
this value cancels out and is eliminated from the final G of a
given species. Hence, only the RI-BP86 energy of a system in a
conductor-like environment (ε = ∞), as described by COSMO
theory and a COSMO-RS correction to the nonideal-conductor
behavior of the solvent, is present in the final value of G.
It is possible that the COSMO(-RS) RI-BP86 energy is free of

the taint present in the gas-phase RI-BP86 calculations or that
this is compensated for in the COSMO-RS scheme or it is at least
not too variable across the studied metal ions. It should also be
remembered that the evaluation can be skewed when the systems
studied are not represented well. One of the obvious candidates
is the [M(CH3COO)(H2O)3]

+ system, which has a consistently
low reproducibility of relative affinities. Either way, RI-BP86
appears as a competitive choice to the investigated alternatives
(see the SI, Tables S1−S6). Apart from its considerably lower

computational cost, it has another valuable property, as discussed
in the following paragraph. Similar conclusions concerning a
good price/performance ratio for BP86 for transition-metal
complexes were also formulated by Furche and Perdew.32

3.5. Elimination of Bias for Individual Metal Ions. We
turn our attention to the values of RMSM presented in Table 4
(i.e., root mean square of metal-specific shifts for a givenmetal, as
defined by eq 8). These can be loosely interpreted as a bias of the
adopted protocol for a given metal ion. An encouraging finding
is that, in the case of RI-BP86, by calibration of the described
protocol a large part of this bias could be eliminated. Thus, the
new value is calculated as follows:

Δ = Δ + +G G MSS LSSM,L
C

M,L
calc

M,avg L (9)

where ΔGM,L
calc is the free energy of binding calculated as before,

MSSM,avg’s are calibration values obtained in a fashion described
below, i.e., one value for each metal ion. The last term, LSSL, is a
ligand-specific shift, which is unknown for reasons discussed in
section 3.3. We use the exact values here (obtained from
experimental values) to highlight the increased precision of the
obtained relative values, which can be seen from a comparison of
Tables 1 and 5.
This calibration is doable thanks to a relatively small variation

of the metal-specific shift, RMSM,L, across different systems, i.e.,
low values of RMSM. Interestingly, these values are lowest for
RI-BP86, whereas the RI-MP2, BHLYP, B3LYP, and PBE
methods are trailing behind in this sense in almost all cases.
Although calibration can be done in a number of ways, the

quality of which will always depend on the set of systems chosen,
the results should not vary fundamentally. This statement is
based on relatively low values of RMSM for all M for a diverse
group of ligands presented, and these are assumed to remain low
even if we included other systems. To minimize the influence of
any one of the systems on the calibration, we use average values
of MSS (listed in Table 4), denoted as RMSM,avg.
Values of ΔGM,L

C are presented in Table 5 and can be directly
compared to experimental values fromTable 1. The contribution
of the calibration can be assessed by comparing the RMSL values
of calibrated (RMSL

C) and uncalibrated (RMSL
orig) protocols. The

calibration improves the prediction of selectivity in almost all
cases, with a single exception of the [M(Imi)(H2O)5]

2+ system.
Although this specific calibration is certainly not optimal, it is

Table 4. Calculated Values of Metal-Specific Shifts and Related Statistics (kcal·mol−1)a

MSSM,L

system Mn Fe Co Ni Cu Zn Cd Hg RMSL LSSL

[M(NH3)4]
2+ −2.8 −2.8 2.9 excl.b 3.1 0.1 1.2 −1.8 2.5 −12.7

[M(NH3)4(H2O)2]
2+ −0.3 0.6 0.7 0.5 4.6 −4.5 0.9 −2.5 2.7 6.3

[M(Imi)(H2O)5]
2+ 1.0 1.5 1.0 −0.3 −0.1 −0.7 −2.3 1.3 1.0

[M(H2O)3(His)]
+ 0.8 −1.4 1.5 −0.1 2.0 −1.9 −0.9 1.5 −10.9

[M(H2O)4(His)]
+ 1.1 −0.6 −1.0 0.5 2.7 −1.9 −0.7 1.5 7.4

[M(H2O)3(Cys)] 0.9 0.0 3.6 −1.3 −4.2 1.0 excl.b 2.6 −21.1
[M(H2O)4(Cys)] 0.8 −1.9 2.3 −1.5 −1.3 1.6 excl.b 1.8 −8.5
[M(CH3COO)(H2O)3]

+ −0.7 −2.5 1.9 −6.4 3.3 0.4 1.3 2.7 3.2 −31.3
[M(CH3COO)(H2O)5]

+ −0.2 −0.9 0.8 −1.5 2.4 −1.2 0.0 0.5 1.3 −5.4
[M(SCH2COO)2]

2− 1.5 1.3 4.9 excl.b −1.4 −4.7 3.6 −46.9
MSSM,avg

c 0.2 −0.9 1.9 −1.1 2.5 −1.6 0.4 −1.3
RMSM 1.3 1.4 1.6 2.3 1.5 1.7 1.0 2.6

aThe protocol used was RI-BP86/COSMO-RS. Only the most negative value of ΔGM,L
calc for each of the systems is listed, and only those for which

experimental data are available are used for calculation of the LSS and RMS quantities. The empty fields are due to missing experimental data.
b“excl.” denotes results that were excluded from analysis; Table 2. cArithmetic average of MSSM,L values over all systems (over all values of “L”).
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conceptually simple, avoids parametrization, and as such is a
significant improvement that gets the majority of the absolute
values of precision of the relative metal-ion affinity below the
threshold of 2 kcal·mol−1, or even 1 kcal·mol−1.

4. CONCLUSIONS
Throughout this work, we tried to give a complete account of
our efforts aiming at quantitatively accurate predictions of the
stability constants of metal ions in (bio)inorganic systems, using
the modern methods of computational chemistry. Together with
a careful benchmarking of quantum-chemical methods to obtain
accurate gas-phase complexation energies carried out in our
previous study,5 this leads us to think that the computational
protocol used in this study represents the current state-of-the-art
of computational chemistry to treat the problem at hand
(ab initio predictions of the “absolute values” of the stability
constants). The only ingredient missing might be the extensive
conformational sampling of all of the studied complexes, as
has been mentioned in the discussion. However, the increase
of computational demands to address this problem would be
formidable, and we are not aware of a standardized protocol that
would enable one to treat large sets of various complexes on
equal footing.
Looking at the results presented in Table 2, one may conclude

that straightforward application of the presented protocol leads
only to a mediocre agreement between the experimental and
theoretical stability constants at best and that this problem
cannot be handled properly by contemporary theoretical
chemistry. However, careful analysis of the trends in computed
stability constants and systematic errors present therein enabled
us to suggest a computationally sound and robust protocol for
estimating the relative affinities of metal ions for the formation of
complexes with ligands to within∼2 kcal·mol−1 average accuracy
(after removal of the systematic metal-specific shifts). This
requires a single geometry that represents the structure in the
water (solvent) environment. Using these, only a single RI-BP86
calculation with COSMO of product complex is required, as long
as decomposition of the free energy into individual steps of the
thermodynamic cycle is not desired; COSMO-RS solvation
energy calculation is also required but comes at practically no
computational cost. A large part of the protocol’s taint is
eliminated by simple calibration. The choice of the particular
calibration values for removal of the metal-dependent shifts is
based on a set of structurally simple systems, and its details do not
fundamentally influence the results obtained.

The fitness of the method used for electronic structure
calculation is significantly altered when it is to be combined with
solvation energies calculated using the COSMO-RS protocol.
A seemingly inappropriate (as judged by the accuracy of the
gas-phase interaction energies) RI-BP86 functional performs,
in conjunction with COSMO-RS, better than other methods
not only in the accuracy of the relative affinities but also in the
consistency of behavior in a wide range of systems of diverse
character.
Admittedly, the protocol has a notable weak point. The

question of structural representation of the system (e.g., the
coordination of H2O molecules) is not easily addressed because
the protocol is unable to reliably predict a correct conformation
because of their inconsistent treatment. Partly, at least, this is
due to the nonzero charge of the systems. However, there is
no simple dependence of the magnitude of error, nor obvious
remedy, available, leaving a direct comparison of the affinity of
metal ions for different ligands still elusive to computational
treatment, whereas the metal-ion selectivity for the particular site
can be addressed reasonably well.
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